آنالیزِ تست Analyzetest

تجزیه و تحلیل آزمون های آزمایشگاهی رشته های دانشگاهی

آنالیزِ تست Analyzetest

تجزیه و تحلیل آزمون های آزمایشگاهی رشته های دانشگاهی






آنالیزِ تست Analyzetest
جهت تحلیل و آنالیز نتایج آزمون های آزمایشگاهی:
TGA
XRD
FTIR
Raman
UV-Vis
EIS
Polarization
Noise
XPS
SEM & TEM
EDS
Ellipsometry
Electroluminescence (EL) spectroscopy
photoluminescence (PL) spectroscopy
NMR
contact angle
DMA

با شماره تماس 09132050479 (جاوید) تماس حاصل نموده و یا از طریق تلگرام پیام ارسال فرمایید. همچنین می توانید به آدرس زیر ایمیل ارسال فرمایید:
javidparvar@gmail.com
در صورتی که در تحلیل یکی از آزمون های آزمایشگاهی تجربه و تبحر دارید با همین راه های ارتباطی و یا از قسمت استخدام آنالیزگر رزومه خود را ارسال فرمایید.
بایگانی

انتخاب انرژی عبور، هم بر انتقال الکترونها از آنالیز کننده و هم بر قابلیت تفکیک موثر است. انتخاب انرژی عبور کوچک منجر به قابلیت تفکیک بالا می شود در حالی که انرژی عبور بزرگ، انتقال بالاتری را فراهم می کند اما قابلیت تفکیک کم می شود. انرژی عبور در سرتاسر رنج انرژی ثابت نگه داشته میشود بنابراین قابلیت تفکیک ثابت می ماند. رنج انرژی عبور در دسترس کاربر، به طراحی طیف سنج وابسته می باشد اما از حدود یک تا چندصد الکترون ولت می تواند تغییر کند. شکل ۱۱ قسمتی از طیف XPS ثبت شدهی نقره را در یکسری از انرژی های عبور، نشان میدهد. این طیف اثر انرژی عبور را روی قابلیت تفکیک و حساسیت نشان میدهد[۴].

روش های حساس به سطح، روش هایی هستند که به کمک آن ها می توان آنالیز شیمیایی را در سطح نمونه انجام داد. منظور از آنالیز سطح، تعیین ترکیب شیمیایی سطح نمونه و حداکثر تا عمق ۲۰ لایه اتمی (۵۰ انگستروم) می باشد. اساس همه روشهای آنالیز سطح، برانگیختن سطح نمونه به کمک یک پرتوی فوتونی یا ذرهای و اندازه گیری انرژی ذرات ثانویه ای است که سطح نمونه را ترک می کنند. منظور از ذرات ثانویه، الکترونها یا یون هایی هستند که در اثر بمباران پرتو ابتدایی از سطح نمونه جداشده می توان آنها را در خارج از سطح، آزمایش کرد. روش های اصلی حساس به سطح که در علم مواد بیشتر استفاده می شوند عبارتند از طیف سنجی فوتوالکترون پرتو ایکس (XPS)، طیف سنجی الکترون اوژه (AES و طیف سنجی جرمی یون ثانویه (SIMS). در این روشها، تنها ذرات ثانویه ای که در نزدیکی سطح پدید می آیند، شانس فرار از سطح و ورود به آنالیز کننده را دارند. ذرات ثانویه پدید آمده در عمق نمونه، به دلیل احتمال برهم کنش با اتم های داخل نمونه، در عمل از بین می روند. بنابراین، اطلاعاتی که از این ذرات خروجی از سطح نمونه به دست می آید محدود به ۲۰ لایه اتمی سطحی بوده و براین اساس، روش های بالا را روش های حساس به سطح نامیده اند. اهمیت روشهای آنالیز سطح در این واقعیت نهفته است که در بسیاری از مطالعاتی که در علم مواد انجام می شود، اطلاعات موجود در سطح ماده حیاتی است. به عنوان مثال در واکنش های یک ماده جامد با یک گاز یا یک مایع، ترکیب های اصلی در سطح نمونه به وجود می آیند و همچنین به پدیده خوردگی مواد که واکنش های اصلی آن در سطح قطعه پدید می آیند، می توان اشاره کرد[۱].

امروزه پیشرفت های موثری در سنتز نانوذرات حاصل شده است که به دلیل پیشرفت در روش مطالعه آنها می باشد. یکی از مواردی که در مطالعه نانوذرات نقش اساسی ایفا می‌کند، تعیین اندازه آن‌ها می‌باشد. استفاده از میکروسکوپ الکترونی عبوری (TEM) یکی از روش های موثر در تعیین اندازه ذرات می باشد که می تواند اطلاعات کمی و کیفی مفیدی را در اختیار ما قرار دهد. TEM روشی است که قابلیت تصویربرداری مستقیم از ذرات تا اندازه یک اتم را ایجاد می کند و این مزیت تصویر مستقیم باید در کار با میکروسکوپ در نظر گرفته شود. در مقاله حاضر به برخی از این موارد پرداخته خواهد شد. برای تعیین خاصیت ذرات نیز تعیین نوع دقیق تصویر زمینه روشن یا زمینه تاریک، بزرگنمایی و روش آنالیز (دستی یا اتوماتیک) بسیار مهم می باشد. این پارامترها در میزان وضوح تصویر و کنتراست بین ذرات و زمینه، تعداد ذرات در هر تصویر، و در نتیجه آنالیز نهایی ذرات موثر می باشد.

ترشوندگی (انگلیسی: Wettability) توانایی یک مایع در برقراری تماس با سطح جامد است و نشأت‌گرفته از نیروهای بین مولکولی می‌باشد. درجه تر شوندگی از تعادل میان نیروهای پیوستگی و چسبندگی تعیین می‌شود. تر شدن، به معنای دیگر، تمایل به کسب حداکثر سطح تماس برای یک مایع با سطح جامد خود است.

زاویه تماس یک قطره از مایع با سطح آن در تعیین تری، مؤثر است. هرچه زاویه تماس به صفر نزدیکتر باشد ترشوندگی بیشتر است. هرچه زاویه تماس به ۱۸۰ نزدیک‌تر باشد آب‌گریزی افزایش می‌یابد. بنابراین زاویه تماس، از طریق اندازه گیری زاویه ای که یک قطره از مایع با سطح جامد ایجاد می کند، بدست می آید و کمیتی برای بیان ترشوندگی سطح جامد به وسیله مایع است. بسته به اینکه اندازه زاویه کوچکتر یا بزرگتر از°90 باشد سطح جامد آبدوست یا آب گریز است؛ در زاویه صفر سطح کاملا خیس می شود، به عبارت دیگر زاویه °90 مرز بین آبدوستی و آب گریزی است.

جذب نور مرئی یا ماوراء بنفش توسط مواد منجر به انتقال سطح انرژی الکترونی شده و یک طیف جذب الکترونی حاصل میشود. بنابراین طیف سنجی و طیف بینی مرئی-فرابنفش یکی از گسترده ترین تکنیکهای مورد استفاده برای آنالیز کیفی و کمی ، با استفاده از بررسی برهمکنش نور و ماده می‌باشد. در طیف سنجی باریکه‌ای از نور (پرتو) به ماده مورد نظر تابانده می‌شود و با بررسی نور بازتابشی یا جذبی یا نشری به دریافت اطلاعات می‌پردازیم. طیف الکترو مغناطیس حاوی گستره ی از طول موجهاست. طول موج گستره ی nm۴۰۰-۸۰۰ گستره مرئی و nm ۲۰۰۴۰۰به گستره فرابفنش نامیده می‌شود. طیف سنجی مرئی فرابنفش به مطالعه این ناحیه از طیف اشعه الکترومغناطیس می‌پردازد.

دستگاه از قسمتهای مختلف نوری و الکترونیکی تشکیل شده‌است. در این دستگاه منبع تابش که میتواند لامپ تنگستن, برای تولید طول موج های ناحیه مرئی و هیدروژن یا دوتریوم,برای ناحیه ماورا بنفش باشد، طیف پیوسته ای از تابش را فراهم میکند. این طیف تابش توسط منوکروماتور تفکیک میشود و پهنه ی باریکی از طول موج توسط ابزارهای نوری به سل تابانده میشود. سپس نور عبوری توسط آینه متمرکز میشود و سرانجام در آشکارساز اندازه گیری میشود. آنالیز کیفی نمونه و بررسی اثر و تغییرات ماتریس بر روی آن از طریق روبش طول موج و بررسی طول موج ماکزیمم بدست می اید.آنالیزهای کمی برای گستره وسیعی از کاربردها با استفاده از قانون بیر-لامبرت که بیان می کند نمودار جذب علیه غلظت با گرادیان εl خطی است و رسم منحنی کالیبراسیون صورت می گیرد . بدلیل نیاز به تکنیکهای سریع در تشخیص مواد مختلف، این روش در مطالعات ساختاری و بنیادی و همچنین حوزه‌های کاربردی همچون تجزیه مواد در رشته‌های شیمی، مواد، رنگ, کشاورزی، پزشکی و کاربرد گسترده‌ای دارد.

با توجه به پیشرفت تکنولوژی در زمینه مغناطیس و کاربردهای وسیع آن ها در زمینه صنعت، نیاز به ابزاری است که بتوان با استفاده از آن خواص مغناطیسی را بررسی کرد. دستگاه های مغناطیس سنج متفاوتی در این راستا وجود دارد که براساس میزان فرکانس جریان های عبوری به چند دسته تقسیم می شوند. دستگاه های مغناطیس سنج به روش های مختلف و در شرایط متفاوت دمایی، میدان مغناطیسی و جهت گیری نمونه، مغناطش یک نمونه از ماده با ابعاد مختلف را اندازه گیری می کنند. اساس کار دستگاه مغناطیس سنج VSM، قانون القای فارادی می باشد که با ارتعاش نمونه و اعمال میدان مغناطیسی به آن، باعث بوجود آمدن یک جریان القایی در سیم پیچ های تعبیه شده در دستگاه می شود که با مغناطش نمونه متناسب است. با انتقال این جریان القایی به کامپیوتر متصل به دستگاه و نمایش حلقه پسماند، مغناطش نمونه اندازه گیری می شود.

DMA به عبارت ساده اعمال نیروی نوسانی به یک نمونه و تحلیل پاسخ نمونه به آن نیرو می باشد. مدول ماده(modulus) و میزان اتلاف انر‍‍ژی (damping) که به ترتیب ناشی از خصلت ویسکو الاستیک مواد پلیمری می باشد ، در این آزمون محاسبه می گردد.در این آزمون، نمونه درحالتهای مختلف خمشی، کششی، برشی و فشاری در شرایط همدما (isothermal) و یا غیر همدما (Non-isothermal) در کرنش بسیار کم که ماده در ناحیه ویسکوالاستیک خطی قرار داشته و از قانون هوک تبعیت می کند، تحت تنشهای سیکلی با فرکانس مشخص (استاندارد Hz 1) قرار گرفته و تغییرات مدول الاستیک(storage modulus) و فاکتور اتلاف (tanδ) بر حسب دما اندازه گیری می گردد. با استفاده از تغییرات مدول در دماهای مختلف انتقالهای مختلف α،β وγ که ناشی از حرکتهای مختلف زنجیرهای پلیمری و گروههای جانبی و یا حرکت انتقالی زنجیرهای پلیمری می باشد مشاهده و بدین ترتیب رفتارهای مورفولوژیکی پلیمرها با دما و یا زمان بررسی می گردد.

بیضی‌سنجی یک روش توانمند و غیرمخرب برای آنالیز لایه‌های بسیار نازک است. این روش قادر به اندازه‌گیری ضریب شکست، ضریب جذب و ضخامت لایه‌های نازک است. این وسیله بر مبنای این واقعیت ساخته شده‌است که بازتاب از یک فصل مشترک (سطح) دی‌الکتریک می‌تواند قطبش و فاز موج ورودی را تغییر دهد. این تغییرات به ضریب شکست ماده بستگی دارد. این روش می‌تواند خواص مختلفی از قبیل ضخامت، خواص نوری، مورفولوژی و حتی ترکیبات شیمیایی لایه را نیز مشخص کند. همچنین بیضی‌سنجی می‌تواند برای اندازه‌گیری ضخامت لایه‌هایی با ضخامت نانومتری که روی زیرلایه‌های مختلف قرار دارند، استفاده شود. حتی به کمک این روش می‌توان چندلایه‌ها (Multilayer) را نیز بررسی و مطالعه نمود.

نام "بیضی‌سنجی" ازاین واقعیت که بیشتر حالت‌های عمومی قطبش بیضوی‌اند گرفته شده‌است. حدود یک قرن از شناخت این روش می‌گذرد و امروزه کاربردهای استاندارد زیادی پیدا کرده است. البته بیضی‌نگاری در حوزه‌های پژوهش دیگر، از قبیل زیست شناسی و پزشکی نیز روز به روز بیشتر مورد توجه قرار می‌گیرد

طیف سنجی فوتوالکترون پرتو ایکس، روشی به منظور بررسی سطح نمونه تا عمق حدود ۱۰۰ انگستروم از نظر آنالیز عنصری، ترکیب شیمیایی و تعیین حالت پیوندی است. با توجه به این نکته که انرژی جنبشی الکترونهای گسیل شده بر اثر یونیزاسیون یک ماده با فوتون تکفام پرتو ایکس مورد اندازه گیری قرار می گیرد، طیف فوتوالکترونهای آن ماده، بر مبنای تعداد الکترونهای گسیلی برحسب انرژی ترسیم می شود. انرژی فوتوالکترونهای هر نمونه آزمون، مشخصه ی اتم های تشکیل دهنده ی آن است، بنابراین اندازه گیری انرژی جنبشی این فوتوالکترونها معیاری برای تعیین عناصر موجود در آن نمونه است. شناسایی حالت شیمیایی و الکترونی عناصر ماده مانند تمایز قائل شدن بین اشکال سولفاتی و سولفیدی عنصر گوگرد از انحرافات اندکی در انرژی جنبشی و اندازه گیری میزان غلظت نسبی آن عنصر با توجه به شدت فوتوالکترون های مربوطه امکان پذیر است. از این روش در طیف وسیعی از صنایع چون هوافضا، الکترونیک، ارتباطات و حمل و نقل و غیره می توان بهره برد.


امروزه مطالعه درباره خواص مواد بدون آگاهی از اطلاعات مربوط به ریزساختار آنها امکان پذیر نیست. به منظور دستیابی به این مهم، استفاده از میکروسکوپ الکترونی روبشیه بسیار رایج و حائز اهمیت است. با توجه به ضرورت به کارگیری باریکه الکترونی برای تصویربرداری در این میکروسکوپ ها و همچنین با در نظر گرفتن این مسئله که طیف گسترده ای از مواد هدایت الکتریکی مناسبی ندارند، استفاده از این میکروسکوپ باعث بروز مشکلاتی برای رسیدن به نتایج مطلوب میشود. برای این منظور، استفاده از پوشش هادی روی سطح نمونه های نیمه رسانا و نارسانا به عنوان بهترین راهکار ارائه شده است که به طور گسترده ای مورد استفاده قرار می گیرد. در این مقاله ابتدا به انواع پوشش های استفاده شده روی نمونه های مورد بررسی در میکروسکوپ الکترونی روبشی اشاره می شود و در ادامه نیز، به دلایل استفاده از هر یک از آنها و انواع روش های پوشش دهی خواهیم پرداخت.

filereader.php?p1=main_c81e728d9d4c2f636

در این پژوهش به منظور رشد عمودی نانولوله های کربنی از روش PECVD بر روی لایه ی سیلیکونی و بواسطه ی کاتالیست نیکل استفاده کردیم. لایه نشانی نقره به روش کندوپاش DC در ضخامت های 35، 60، 85 و 100 نانومتر بر بستر نانولوله های کربنی صورت پذیرفت. ساختار به دست آمده را با استفاده از میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM) و روش طیف سنجی رامان مورد شناسایی و تغییرات ساختاری و خواص الکتریکی را مورد بررسی قرار دادیم.

(TGA thermal gravimetric analysis) یک روش تحلیلی حرارتی است که مبنای عملکرد آن تغییر جرم نمونه با تغییر دما، در طول زمان است. این اندازه گیری، اطلاعاتی در مورد پدیده های فیزیکی مانند انتقال فاز، جذب و دفع و همچنین پدیده های شیمیایی مانند جذب شیمیایی، تخریب حرارتی و واکنش های جامد-گاز می دهد. TGA یک ابزار آزمایشگاهی ضروری مورد استفاده برای هویت شناسی مواد است. این مقاله مقدمه ای بر مفاهیم TGA را با پاسخ گویی به سوالات رایج در این زمینه را فراهم می آورد. 

filereader.php?p1=main_ce3ed19c0f39e683a

 می‌توان گفت مهم‌ترین بخش از آشنایی با XRD، تحلیل داده‌هایی است که در مورد مواد مختلف از طریق این روش به دست می‌آیند. روش‌هایی مانند رابطه‌ی براگ، روش دبای شرر و روش ویلیامسون‌هال از جمله روش‌های تحلیل کمی داده‌های XRD هستند که به کلیات آنها خواهیم پرداخت. اما قبل از تحلیل کمی، تحلیل کیفی داده‌های مربوط به ساختارهای کریستالی مختلف مواد را با هم بررسی می‌کنیم.

شناسایی فاز های موجود در ریز ساختار ماده از طریق ترکیب شیمیایی، نقش به سزایی در شناخت و تعیین فاز های مجهول ایفا می کند. طیف سنجی پراکندگی انرژی پرتو ایکس (EDS) برای تجزیه و تحلیل ساختاری و آنالیز عناصر موجود در نمونه به کار می رود و با نصب آن بر روی میکروسکوپ های الکترونی می توان با مطالعه پرتو هاى بازگشتى از نمونه و تعیین پرتو ایکس مشخصه هر عنصر، با استفاده از قدرت تفکیک و قابلیت بزرگنمایى مختلف، آنالیز کیفى و کمى را بر روی طیف وسیعی از نمونه ها انجام داد. در این مقاله ضمن توضیح نحوه عملکرد و معرفی بخش های مختلف سیستم های EDS ،مزایا و معایب این روش به طور کامل شرح داده شده است.

طیف فرو سرخ و تاباندن نور بر ساختار مولکولی، به معنای واقعی کلمه یکی از اصلی ترین و مفیدترین ابزار اکتشافات علمی در اطراف ما بوده است از آنجاییکه از ابتدای زمان،نژاد بشر شروع به استفاده از آن کرده است حتی قبل از آنکه ما نامی بر آن بگذاریم. این ابزار شگفت انگیز چیست؟ نور!روشن سازی به ما اجازه می دهد تا ببینیم آنچه که ما داریم انجام می دهیم و مشاهدات بنیادی در مورد بتحقیقات علمی را ممکن می سازد و اندازه گیری طول موج های روشن مختلف می تواند به ما در مورد یک ماده بگوید. در آزمایش پلیمرها، برای بدست آوردن اطلاعات در مورد ماده دلخواه، ما از طیف سنجی (آزمایش اینکه مواد چطور در یک جامد، مایع یا شکل گازی با نورواکنش می دهند) استفاده می کنیم.

filereader.php?p1=main_ec6ef230f1828039e

جذب (Absorbance) فرآیندی است که در آن یک ماده به طور گزینشی، انرژی فرکانس های خاصی از تابش الکترومغناطیسی را جذب نموده و در نتیجه پرتو تابشی اولیه را تضعیف می کند. طیف سنجی فرابنفش و مرئی، جذب تابش الکترومغناطیسی توسط ماده در ناحیه فرابنفش / مرئی است. مولکول های آلی، گونه های معدنی و کمپلکس های انتقال بار سه دسته مهم از جاذب ها در طیف سنجی فرابنفش و مرئی هستند. مهمترین انتقالات ترکیبات آلی مربوط به دو انتقال n بهو π به *π  است. الکترون های مسئول جذب در گونه های معدنی در اوربیتال های d و f قرار دارند و جذب انتقال بار در کمپلکس ها نیز محصول یک نوع فرآیند اکسایش/کاهش درونی است. ممکن است تمام انرژی یک فرکانس از تابش توسط ماده جذب نشود. عبور (transmittance) مقیاسی از کمیّت نور جذب نشده است. جذب نیز یک کمیّت بدون واحد است که با غلظت رابطه مستقیم دارد. قانون بیر-لامبرت (Beer-Lambert) رابطه ی بین جذب و غلظت را بیان می کند. یکی از عواملی که بر طیف های جذبی اثر می گذارد قطبیّت حلال است که بر حسب نوع انتقال می تواند باعث ایجاد انتقال در فرکانس نور قابل جذب (انتقال قرمز به سمت فرکانس های کمتر یا آبی به سمت فرکانس های بیشتر شود.

filereader.php?p1=main_1679091c5a880faf6

طیف سنجی رامان یک تکنیک طیف سنجی مولکولی است (یعنی با شناسایی مولکول ها سر و کار دارد، نه اتمها) که کاربرد های متنوعی در زمینه های تحقیقاتی مختلف پیدا کرده است. تکنیک رامان بر خلاف سال های ابتدایی ابداعش، امروزه بسیار متداول شده و در علوم پایه و کاربردی استفاده فراوانی پیدا کرده است. در حقیقت تکنیک رامان کاربرد گسترده خود را مدیون پیشرفت های دستگاهی زیادی است که تاکنون در این زمینه پدید آمده و این تکنیک را بیش از پیش ساده تر، قابل دسترس تر و مقرون به صرفه تر کرده است. البته با وجود پیشرفت های به عمل آمده، هنوز در برخی موارد تفسیر یک طیف رامان دشوار بوده و نیازمند مهارت ویژه ای می باشد تا از تفسیر های نادرست اجتناب شود.

در علوم مهندسی، موضوع آنالیز و شناسایی مواد از اهمیت کلیدی برخوردار است. روشهای آنالیز و شناسایی مواد از نظر تحقیق و توسعه و همچنین از نظر کنترل کیفیت، مورد توجه هستند. بهمنظور دستیابی به بهترین نتیجه در آنالیز و شناسایی 4 مواد، به روشها و دستگاههایی نیاز است که یکی از مهمترین این تجهیزات میکروسکوپ الکترونی روبشی است. با توجه به کاربرد روزافزون و مقرون به صرفه بودن میکروسکوپ الکترونی روبشی، باید اشاره کرد که دامنه بزرگنمایی این میکروسکوپها چیزی در حدود 5 تا 1000000 برابر امکانپذیر شده است.

filereader.php?p1=main_b7ba4fa86f350473e

با توجه به گوناگونی مفاهیم مرتبط با رفتار بین نمونه و الکترون، تکنیک های متعددی مرتبط با کار میکروسکوپ الکترونی عبوری وجود دارد. بر این اساس و جهت تصویرسازی در TEM، در ابتدا یک الگو با استفاده از پرتوهای عبوری و یا پراکنده شده، که با استفاده از دریچه‌ها انتخاب می‌شوند، تهیه شده و سپس تحت تاثیر عدسی های مناسب به منظور به دست آوردن تصویری با کنتراست بالا قرار می‌گیرد. این فرایند انتخاب پرتو، تکنیک هایی مانند اندازه گیری های میدان روشن و میدان تاریک و تصویربرداری با رزلوشن بالا (HR-TEM) را از یکدیگر تفکیک می کند. در این بین پراش الکترون یکی از مهمترین پدیده های است که در میکروسکوپ‌های الکترونی عبوری و در هنگام بررسی نمونه های بلوری اتفاق می‌افتد، که با بررسی آن طیف وسیعی از داده ها در مورد ویژگی های ساختاری مواد نشان داده خواهد شد.

فرایند جذب مادون قرمز:

تقریبا تمامی ترکیباتی که پیوند کوالانسی دارند، اعم از آلی یا معدنی ، فرکانسهای متفاوتی از اشعه الکترومغناطیسی را در ناحیه مادون قرمز طیف ، جذب میکنند.

مانند انواع دیگر جذب انرژی ، موقعی که مولکولها ، اشعه مادون قرمز را جذب میکنند، به حالت انرژی بالاتر برانگیخته میگردند. جذب تابش مادون قرمز مانند هر فرآیند جذب دیگر ، یک فرآیند کوانتایی است، بدین صورت که فقط فرکانسهایی مشخص از تابش مادون قرمز توسط مولکول جذب میگردد. جذب تابش مادون قرمز با تغییر انرژی بین (KJ/mol (8-40 همراه است.

تاریخچه:

در سال 1887 اثر فوتوالکتریک  توسط هانریش هرتز کشف شد،در سال 1905

اینشتین این مسئله را با استفاده از فیزیک کوانتم توضیح داد و جایزه نوبل 1921

را از آن خود کرد. در 1907 فردی به نام P.D.Innes با استفاده از لامپ کاتدیسیم پیچ هلمهلتز و میدان مغناطیسی نیمکره ای و فیلم عکاسی(برای ثبت اثر الکترونهای ساطع شده)  آزمایشی انجام داد که نتیجه آن ثبت اولین طیف سنجیXPS بود.

عوامل مؤثر بر شدت پیک:


از عواملی که بر شدت پیک ها در الگوهای پراش تأثیر گذار هستند می توان به موارد زیر اشاره کرد:


1- ماهیت نمونه مورد آزمون (تک فازی یا چند فازی بودن نمونه) بدین صورت که هرچقدر تعداد فازهای موجود در نمونه زیاد شود، از ماکسیمم شدت پیک الگوی پراش کاسته می شود. (به دلیل اثر گذاری فاکتور مقیاس است که در آینده توضیح داده خواهد شد.)

  • پراش پرتو ایکس (XRD) :

    ·         XRD یا همان پراش اشعه ایکس (X-RAY DIFFRACTION) تکنیکی قدیمی و پرکابرد در بررسی خصوصیات کریستال‌ها می‌باشد. در این روش از پراش اشعه ایکس توسط نمونه جهت بررسی ویژگی های نمونه استفاده می شود. XRD برای تعیین عموم کمیات ساختار کریستالی از قبیل ثابت شبکه، هندسه شبکه، تعیین کیفی مواد ناشناس، تعیین فاز کریستال‌ها، تعیین اندازه کریستا‌ل‌ها، جهت گیری تک کریستال، استرس، تنش، عیوب شبکه وغیره، قابل استفاده می‌باشددر این مقاله ابتدا با اساس کار XRD و سپس با اجزا XRD آشنا خواهیم شد.